Computer Programming Using Python 2.7 - Pygame 1 page1of2 - Graphics & Keyboard Events

For this lesson we will look at a program that uses pygame. Pygame allows you to program your own way of handling keyboard events using “if” statements. It also allows you to draw your own graphics. In pygame you can see in more detail how events and graphics work, since you do everything using code instead of designing windows.

We will start out with a program that allows you to move a box using arrow keys. To learn about events, first you must try to make it also move up and down, without help. Later you can get help.

· Open IDLE
· File, Open, Computer, StudentSharedFiles, S:\ComputerProgramming\Topics\Pygame_UserControlledBox_x.pyw
· File, Save As, choose Computer, your H: drive, & name it pygame1box.pyw
· Look at the event loop in the code and try to add more “if” statements to make it move both up and down. This part is the event loop:
· [image:]
Below is an explanation of how it works, written in pseudocode (non-computer language version) of the code:
While the game is running,
the clock waits for the next frame,
and for each event
	 if the event is a quit event (if someone clicked ‘x’),
		 change the bContinue variable so the “while” loop will stop next time
	check for a key down.
		If the key is the left arrow key,
			Subtract from the location of the left side
				If the key is the right arrow key
					Add to the location of the left side
TIP: What is the difference between “is” and “==”? ANSWER: “is” checks whether it is the same object (set the same way), & “==” always returns true if the value is the same, even the value came from a different place. Since event keys are always set to constants (the special variables that never change, usually CAPITAL LETTERS), they could also use “is”, but I have used “is” only for the event type, so that the code is easier to read by seeing the difference between event type & checking what key was used.
· Now add more elif statements indented the same way to make it able to move up and down. You will need to add at least 4 lines of code. After you participate in this for at least 10 mins and have at least four lines of code written, you can get help from the teacher.

BONUS: Correctly add a break statement so that the loop stops immediately when a quit event is found.

(continue to next page)

[bookmark: _GoBack]Computer Programming Using Python 2.7 - Pygame 1 page 2of2 - Graphics & Keyboard Events: Keys Held Down

[image:]Open IDLE and open your Pygame1_UserControlledBox.pyw that you saved. We can improve the Box class so we can keep track of where it is (x and y location) and how fast it should move (xvel and yvel for velocity):
· To make the game easier to reprogram, you can change the class from using rect.left and rect.top to using x and y. To control how fast it should move, also make xvel and yvel variables. To do these things, find the Box class and change it to this:
· Now you can reprogram the event loop so the box keeps moving using velocity variables you made:[image:]
· Now you must remove places where the rect (rectangle) was used:
· Edit, Replace, Find: box.rect.left, Replace with: box.x, Replace All
· Edit, Replace, Find: box.rect.top, Replace with: box.y, Replace All
· Then change lines under “prevent going past edge of screen” to use x instead of right (see code above, and
Copy&paste all lines under “prevent going past edge of screen” & change from box.x & screen_w to box.y & screen_h
· Now continuing to move left and right by holding down keys should work. Try Run, Run Module. Now try to figure out yourself how you would do all of the same things for y and yvel that you did for x and xvel. If you look at it carefully, you can figure it out. It is probably easier to figure out than describe what to do. If you get stuck on the instructions below that describe it, just read all of the instructions, then all of your code, then repeat until you get it. If you don’t understand part of the instructions or part of your code, ask the teacher.
· Copy and paste the elif block under “increase velocity” twice (block means both the line with elif which checks, and the next line which is what happens)
· Change one of the elif blocks you pasted (both the if line and the result line) to check for up & to set box.y to a negative number (instead of setting box.x to a positive)
· Change one of the elif blocks you pasted (both the if line and the result line) to check for down & to set box.y to a positive number (instead of setting box.x)
· Copy and paste the if block under “stop when key up” once (both the line with “if” which checks, and the next line which is what happens)
· Change the one you pasted so that “if” checks for up and down, and next line sets box.yvel instead of box.xvel
· Copy and paste the line under “move based on velocity”
· Change the one you pasted so that it changes box.x based on box.xvel
· Copy and paste both the if block and the elif block (4 lines total) under “prevent going past edge of screen” once
· Change the ones you pasted to use box.y instead of box.x
· Change the ones you pasted to compare to screen_h (which is the height) instead of screen_w (which is the width)
BONUS: Change code to stop box as soon as the right edge (instead of x) touches the screen edge (HINT: use math formula for right side instead of just using x)
image1.png
while bContinue:
clock.tick(16)
for event in pygame.event.get():
if event.type is pygame.QUIT:
bContinue=False
elif event.type is pygame.KEYDOWN:
if event.key==pygame.K_LEFT:
box.rect.left-=10
elif event.key==pygame.K_RIGHT:
box.rect left+=10

image2.png
class Box:
x=320
y=240
w=20 #width
h=20 #height
xvel=0
yvel=0

image3.png
for event in pygame.event.get():
if event.type is pygame.QUIT:
bContinue=False
elif event.type is pygame.KEYDOWN:

#increase velocity to 3 when each arrow key is pressed down:
if event.key==pygame.K_LEFT:
box.xvel=-10

elif event.key==pygame.K_RIGHT:
box.xvel=10
else:
print "unused "+pygame.key.name(event.key)+" key--scancode:"+str(int(event.key))

elif event.type is pygame.KEYUP:
#stop when key up:

if (event.key==pygame.K_LEFT) or (event.key==pygame.K_RIGHT):
box.xvel=0

#move based on velocity:
box.x+=box.xvel
#prevent going past edge of screen:
if box.x>=screen_w:
box.x=screen_w-1
elif box.x<0:
box.x=0

screen.fill(colorBlack)

